Read QMS data#

Read and plot#

from aklab.qulee import QMS
qms = QMS('../../../data/S1_210208_131938.CSV')
qms.plot()
../_images/f8c331b7d16f02a1b0f0f3e5ba2103332b1a5ae0448d4f3496d46e9966e80870.png

Data format#

Data is formatted as in this example. .iloc[:,:8] is used to reduce the output table size.

fmt = {i:'{:.1e}' for i in qms.data.keys()[4:]}
fmt['date'] = lambda t: t.strftime("%y%m%d %H:%M:%S")
qms.data.head(5).iloc[:,:8].style.format(fmt,precision=2)
  date tsec No Time Trigger analog2 qmsTP m2
0 210208 13:19:38 0.00 1 000:00:00.000 1.0e-08 1.0e-99 7.1e-03 2.3e-10
1 210208 13:19:38 0.30 2 000:00:00.296 1.0e-08 1.0e-99 7.0e-03 2.3e-10
2 210208 13:19:38 0.61 3 000:00:00.609 1.0e-08 1.0e-99 7.0e-03 2.3e-10
3 210208 13:19:38 0.92 4 000:00:00.921 1.0e-08 1.0e-99 6.9e-03 2.3e-10
4 210208 13:19:39 1.23 5 000:00:01.234 1.0e-08 1.0e-99 6.9e-03 2.3e-10

Slice#

Use slice() to get a portion of the data.

from datetime import datetime as dt
sliced = qms.slice([dt(2021,2,8,13,19,40),dt(2021,2,8,13,19,41)])
sliced.iloc[:,:8].style.format(fmt,precision=2)
  date tsec No Time Trigger analog2 qmsTP m2
7 210208 13:19:40 2.17 8 000:00:02.171 1.0e-08 1.0e-99 6.8e-03 2.2e-10
8 210208 13:19:40 2.48 9 000:00:02.484 1.0e-08 1.0e-99 6.8e-03 2.2e-10
9 210208 13:19:40 2.80 10 000:00:02.796 1.0e-08 1.0e-99 6.7e-03 2.2e-10